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SUMMARY

An analytical methodology is presented for calculating, to the first order,

the probability that a system will successfully complete its mission. The methodology,

which is quite transparent, is designed to yield results quickly and without the use of

a large computer. It is not intended to replace the formal, more accurate computerized

methodologies that use Monte Carlo simulation or numerical partitioning.

The probability of mission success is calculated by collapsing a network of

probabilities. Each network probability represents the probability of no failure of the

system in a failure mode that, either by itself or in concert with other failure modes,

would abort the mission. The fact that there is a probability of failure of the system in

a given failure mode reflects the uncertainty embodied in the system's capacity, or in the

demand placed on the system, or both. Systematic and random uncertainties are differen-

tiated. The systematic uncertainties are associated with the estimates of the capacity

and demand means, which are treated as random variables. The systematic uncertainties are

ultimately reflected as variability in the calculated probability of mission success.

The system failure modes that would abort the mission are grouped into sets

such that within each set it can be reasonably assumed that there is perfect dependency;

between sets, it can be reasonably assumed that there is statistical independency. Each

such set represents one probability in the system's probability-of-mission-success network.

Arbitrary correlation, reflecting the systematic uncertainty in the estimates of capacity

and demand means, is admitted between any two probabilities in the network.

The density distributions for capacities, capacity means, demands, and demand

means are assumed to be lognormal. The effect of this assumption and of other approxi-

mations inherent in the methodology are demonstrated by working illustrative problems

with both the presented methodology and Monte Carlo simulation. The applicable domain

of the methodology hereby established is sufficiently large to encompass many problemsi Iyof interest to analysts, designers, managers, physicists, and planners in the Defense

Nuclear Agency community.

The precented methodology (or for that matter any methodology of the same

purpose) requires that systematic uncertainties be quantified using subjective

reasoning. If a sponsor will not accept subjective estimates, then there can be no

application of the methodology. Most sponsors, however, will entertain the idea of sub-

jective estimates if the bases for these estimates are well documented.

.,,... ..... ..... .... ............. .. .. ...... ....... .
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SECTION 1

INTRODUCTION

1-1 PURPOSE.

The purpose of this document is to present a first-order methodology for calcu-

lating the probability that a system will successfully complete its mission, to illustrate

the methodology, and to validate the methodology.

1-2 APPLICABILITY.

The methodology is directed to analysts, designers, managers, physicists, and

planners who are unaccustomed to working with statistics and probability theory. The users,

however, are assumed to have had an introductory course in statistics and probability

theory. The methodology, which makes use of closed-form solutions and is quite transparent,

is designed to yield results quickly and without the use of a large computer. It is not

intended to replace the formal, more accurate computerized methodologies that use Monte

Carlo simulation or numerical partitioning.

Within its specified applicable domain, the methodology yields quantitatively

accurate results. Outside its domain, it yields qualitatively accurate results. The

applicable domain is sufficiently large to encompass many problems of interest to the

Defense Nuclear Agency community.

1-3 BACKGROUND.

Either an explicit or an implicit probability-of-mission-success criterion is

imposed on the designing of a system, be it civil or military, small or large, simple or

complex. Each mission of the system would have its own criterion. A typical explicit

criterion would read:

The lower one-sided Q-confidence limit for the probability that the system
will successfully complete Mission X shall be at least PMS o .

Implicit criteria, by contrast, make use of such terms as ''factor of safety," ''margin of

safety," and "reserve capacity." 'Implicit criteria, which call for deterministic method-

ology, are not addressed here.
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The probability of mission success is calculated by collapsing a series-

parallel network of probabilities. Each network probability represents the probability

of no failure of the system in a failure mode that, either by itself or in concert with

other failure modes, would abort the mission. The fact that there is a probability of

failure of the system in a given failure mode reflects the uncertainty embodied in the

system's capacity, or in the demand placed upon the system, or both. In general, both

random and systematic uncertainties are present. Random uncertainty cannot effectively

be reduced by gathering more data or by conducting research and development. Systematic

uncertainty, however, can be reduced by gathering more data or by conducting research and

development, since it reflects parameter estimation and modeling errors; i.e., it reflects

our ignorance. The presence of systematic uncertainty prevents us from calculating the

probability of mission success with 100% confidence.

Refer to Reference 6 for additional background.

1-4 ORGANIZATION.

This report is organized into nine sections and two appendixes. Section 2

explains how to calculate the mean, the random coefficient of variation, and the syste-

matic coefficient of variation of the system's capacity in a given failure mode and of the

demand placed on the system. Section 3 explains how to calculate the probability that

a capacity will exceed a single application of a demand. The methodology presented in

Section 3 is extended in Section 4 to the problem of repeated applications of demand.

Section 5 concludes that the methodology presented in Section 4 is, with a change of

notation, also applicable to a set of failure modes. Section 6 explains how to use the

methodology presented in Sections 2 through 5 to assess the probability of mission

success of an existing system. Section 7 explains how the reverse concept of assess-

ment, the allocation of the probability of mission success to an evolving system, is

accomplished. Finally, closing remarks are made in Section 8. References are given in

Section 9. Key derivations are given Appendixes A and B.

With the exception of Sections 5, 8, and 9, each section is organized into

four subsections: introduction of the subject, methodology, example problems sol.ed by

the methodology, and validation of the methodology by re-solving the example problem with

Monte Carlo simulation.



SECTION 2

CAPACITY AND DEMAND

2-1 INTRODUCTION.

A system responding in a given failure mode is characterized by its current

capacity to resist failure and by the demand placed on the system. In general, both the

capacity and the demand will be random variables. For our purposes, three descriptors are

sufficient to describe the capacity or the demand: (1) its mean (expected, or average)

value; (2) its random coefficient of variation (COV); and (3) its systematic COV. Use

the equations given below to calculate these three descriptors for the capacity. Change

the notations used in these equations and use them to calculate the three descriptors for

the demand.

2-2 METHODOLOGY.

First, either implicitly or explicitly state capacity C symbolically in terms

of its (functionally) independent variables:

C = f(x I ... x ... x (2-1)

The first-order approximation of the mean of C is simply'

Sj '- xJ(2-2)

where Vxj is the mean of x,. Equation 2-2 is quite accurate, provided that the

nonlinearity in f(') with respect to xj, near p x., is not severe and that the

variability of x. is not large. If required, the accuracy of Equation 2-2 can be
J

increased by adding the second-orde- term:

J 2
LlC f +\-~ 0.5 F, 2 f 62

x I x xJ) j=l xi ~x

2+0.5 ]f 6.. (2-3)
i= j I iJ x x

The standard deviation divided by the mean.
t See, for example, Reference 1 for the derivation of Equations 2-2, 2-3, and 2-4.
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where 12 f/,. is to be evaluated at P)l P I P '. is the COV of xxJ 3 j

and .. is the correlation coefficient for x. and x.. The square of the COV

of C is simply

C -- ) x 1Txx. E --xj ij6 x 6 x (2-4)

j=171 J i=I j=l PC'i j

2
Equation 2-4 is quite accurate for 2 .< 1. Notice that the estimates of p C and

6C are dependent only on the means and COVs of the probability density distributions of

the independent variables; distribution details enter into the higher-order terms, which

are not used here.

Invariably, your values for the mean and COV of x. will be only esti-J
matcs. In general, the error in your estimates of 6x the actual COV of x.,

will not be of consequence relative to the error in your estimate of ,xj, the

actual mean of x.. Therefore, neglect the error in your estimate of 6x. but

a count for your error in estimating ixj by assuming that i,., your best esti-

mate of ,x is itself a random variable with actual mean ,xj and actual COV

Denote xj as the random COV of x., and A7(j as the systematic COV of

x.. In a similar fashion, account for the random and systematic uncertainty in yourJ
functional form of C (Eq. 2-1). Equations 2-2, 2-3, and 2-4 now become

C f(x ....x .. x ) (2-2a)

1 - 2 f Jf
f( l ..x x ) + 0.5 F x j 2 + 0.5 X 6 x J { )xI 6

J j= x j i=l j=l iji i x

J 14 j

(2-3a)

This concept for accounting for your error in estimating 6x. and ; comes fromII xJ
Ang (see,for example, Ref.2). However, in what follows, we depart from Ang's

method of application of this concept.
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I

i 2 • 2 J lx. :,.f ,2 2 J J x' '" i i

62* E _Lj. 2x - - . .S 6 (2-4.a)
J~ i=I j=l E2 j ,

4j

where 6 f is your best estimate of the COV that reflects the random variability in

the functional form of C for given values of x., and the remaining symbols, con-J

ventions, and restrictions are as previously defined. Use Equation 2-2a or 2-3a to

calculate the mean of C, and Equation 2-4 a to calculate the random COV of C.

Use the following approximate expression to calculate the square of the

systematic COV of C:

2 2 J ~ ~ A-2 + 1 i\ A- (-5)
'C 2 2 2 -2 . j IJ x x

C j i=i j=l C i j I

4j

where \Rj is the COV you associate with how well x. represents lixj, A- is the

COV you associate with the modeling error in your functional form of C; ,- is
Ij

the correlation coefficient for R. and R.; and the remaining symbols, conven-
I j

tions, and restrictions are as previously defined. Notice the similarity between

Equations 2-4a and 2-5.

Determine xj., Sxj, 6f, and ,ij from appropriate statistical data.

Choose A~j by quantifying your ''degrees of belief" about how well x. represents

'xj, the actual mean of x. (Similarly for AT.) Use the information provided

in Figure 2-1 to help quantify your degrees of belief. Use judgment to assign

values for the correlation coefficient for R. and x..

It should not be overlooked that a large, deterministic computer code can

• be used to calculate means and COVs with the above methodology. The code itself

would be used to calculate the first-order estimate of the mean and the partial

derivatives appearing in the equations for the COVs. The stringinq together of these

partials for the actual calculation of the COVs and the second-order estimate of

the mean would be done outside the code.

If experiments have been performed, use A -. 6 xj\ /n, where n is the number of

experiments . J

9



2-3 ILLUSTRATIVE USE.

Calculate the mean, the random COV, and the systematic COV of the capacity

C x x2 exp(O.50y)

wherey

x 1.00

=0.50

6 = 0.17

6 = 0.23
y

Sf = 0.10

A- = 0.03I x
A- = 0.11

A- = 0.15

First caculate E,6C, and AEusing Equation 2-2a to estimate the

mean of C.

Equation 2-2a.s

R2.~2exp(O.509)

= 1.284.

Equation 2-4a.

2)62 2 6 2 + 25262 + 6 0.2 + p6 6C f x y xy xy yx xy

0.3852

10



Equation 2-5..

2 2 2 2
At= A + 4A- + 0.25~ A. + 9pR9.ARA.. + p.A..A.f x R Ryy yx

= 0.1642

Now, calculate C, 6Pand At using Equation 2-3a to estimate the mean

of C.

Equation 2-3a.

x2 e x p ( O -5 0 9 ) I + 6 x + O .l 2 5 6 + 0 .1 x y x + O .5 P y x6 x~ j

1.234 x 1.05

1.348

Equation 2-4a.

2 _0.38522

C = .52 =0.367

Equation 2-5.

A 0.164 2- 0.156 2

C 1.052

Since the second-order terms are only 5% of the first-order term, we can conclude that
the estimates of C, 6C, and AE are, as will be seen below, relatively accurate and

relatively insensitive to the assumed distributions of x, y, f, X, y, and f



2-4 VALIDATION

In order to validate the methodology presented in this document, we have used

the Monte Carlo simulation technique to rework the illustrative problems. In this tech- !t

nique, pseudorandom variates are generated on a computer to form artificial samples. We

used the Marsaglia-Bray method (Ref. 3) on a Data General Eclipse S/130 computer to

generate pseudorandom normal and lognormal deviates. Cycling of the deviates was

required for some of the problems because of inadequate word length on the computer.

In our simulations for the illustrative problem presented in Section 2-3,

an outer loop of size 1000 controlled the generation of the systematic deviates. For

each set of systematic deviates, an inner loop of 1000 sets of random deviates was

collected. In our first simulation, all distribution models (x, y, f, x, y, ?) were

assumed normal. The results were C = 1.339, 6C = 0.378, and A- = 0.152. Our method-

ology, which makes no assumption as to distribution, yielded C = 1.348, 6C = 0.367,

and .- = 0.156. The agreement is seen to be quite good.

In our second simulation, all distribution models except f and f were

changed to lognormal to test the sensitivity of the results to the assumed distribution

models. The results were C = 1.344, C = 0.399, and A- = 0.153. It is seen that

the assumed distributions of x, y, f, x, y, and f do have an influence on C, 6C'
and A-, but that it is small. In general, this influence will be small regardless of

the distributions, provided the second-order term in Equation 2-3a is small compared to

the first-order term.

12
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SECTION 3

CAPACITY WILL EXCEED DEMAND

3-1 INTRODUCTION.

Consider a failure mode where the system's capacity is C under the demand 0.

The probability that C will exceed D can be calculated with 100% confidence if you

know the distribution, the true value of the mean, the random COV, and the functional

form of C and D, that is, if A= = C = AD = 0. For lognormal distribution

of C and D, this probability is precisely

P(C > D) C ()(3-1)rln 1 + C) (1 + 62)

where

C = Mean of C

W = Mean of D

6 C = COV of C

6 D = COV of DtD
P ()= Cumulative probability of the standard normal variate

(see Table 3-1)

However, for the realistic case of nonzero Als, P(C > D) itself becomes a random

4 variable, in the Bayesian sense, with expected value P and systematic COV A

In what follows, we elect to write Q(P > P ) for the probability that P > Po, and
00

to read Q(P > P ) as "our confidence that P exceeds Po"

This section shows how to calculate P, Ap, and Q(P > P0 ) for log-

normal distribution of C, D, C, and D and for functionally and statistically

independent C, D, C, and D. However, the methodology will yield reasonably

accurate results for other unimodal distributions when P, Po0 and Q are near 0.5,

say, 0.01 < (P, Po' Q) < 0.99.

14
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3-2 METHODOLOGY.

Calculate the expected value of P(C > D) using the following equation:

D) L(+ 62 +(3-2)

whe re

C = Your best estimate of PC, the actual mean (average, or
i expected) value of C (see Eqs. 2-2a and 2-3a)

D= Your best estimate of jiD, the actual mean (average, or.1 expected) value of D

& = COV that reflects how well C, represents IJ, the actual

A- = COV that reflects how well D represents D, the actual

DD

mean of D

@()= Cumulative probability of the standard normal variate
(see Table 3-1)

t 6C  = COY that reflects your best estimate of the random nature
of C (see Eq. 2-+a)

= CO that reflects your best estimate of the random nature

pof D

menl of C~ (se E. 2)

(se Ta e 3(3-3)

, n(1 + s ( +

Note that the ratio C/D is, to the first order, the mean factor of safety. For
2 2 2_2small COVs (i.e., 6C << 1, c < y 1, esi<< I, and o m 1), Equation 3-2 reduces

to

NThe derivation of Equations 3-2 and 3-5 is given in Appendix A.

15



(C > D) ( lnID) (3-2a)

where

T= 6I 2- +2 (3-3a)62 + 62
C D

Equation 3-2a is displayed in Figure 3-1.

The median value of P(C > D) is

P(c > 0) =*(,k \[I + T (3-4)

where P = P(kp). With the aid of Equation 3-2, Equation 3-4 becomes

44( - 2)(1 + A2)

D)~2 5c(1I (C > D) "* 4) (3-5)

In I + 62)( +26)

Use Figure 3-2, or the following approximate expressions, to determine! *
the systematic COY of P(C > D):

2 T 2  exp - T for T < 0.7 (3-6)
27rp 2 (1 + T2 )  1 + T 2

) 2

2 ( 5 -c 1  4 )0.327T 0 2 1 5 5

2 0.25 - -L cot I + p )[ P(I - 32

At 22 "T for T > 0.7 (3-7)

Unfortunately, a closed-form expression for Ap could not be derived. The deri-
vation of Equations 3-6 and 3-7 is given in Appendix B. It should be noted that

Equation 3-7 is partially empirical.

16



7

Use the following equation to calculate your confidence that

P(C > D) > P
0

,I k + 7 kp

Q(P > P = p T (3-8)

= ( ) (3-8a)

Equation 3-8a is plotted in Figure 3-3 for an illustrative value of P and for

various T. Note that Equation 3-8 plots as a straight line in normal-normal

probability space.

The following alternative form of Equation 3-2 is better suited for

calculating the required mean factor of safety of a failure mode:

(+ 62 1+ A?) I
-p (k- i D+ T 2 n (l + + 6 (3-9)

D 6 2)(l + 2? e p D

For small COVs, Equation 3-9 reduces to

-=exp kp (i + T26 + 2)(3-9a)C D

3-3 ILLUSTRATIVE USE.

Calculate the probability that capacity will exceed demand, where

C = 1.28 6 = 0.21

= - 0.55 AE = 0.16

6 = 0.39 A5 = 0.24

Substitution of the lower one-sided Q-confidence limit for PC /Io into Equation 3-1

yields, upon rearranging terms, Equation 3-8.

17



First calculate the parameter T (Eq. 3-3):

In(l + 062)(1 
+ 0.24) = 0.663

T= IIn(1 + 0.39 2) (1 + 0.21 2) 066

Next, calculate the expected probability of 
no failure (Eq. 3-2):

S 1.28 /(1 + 0.21 2)(I + 0.162)

in 0.5 0 .392)( + 0.242)P(c > 0) . . . . . . .

V(I + 0.662) ln(1 + 0.392)(1 + 0.212)

=( P.51)

= 0.935 (Table 3-1)

2

Next, for the purpose of later reference, calculate Ap (Eq. 3-6):

2 .62 22________

A2=0.3 +0.62 Exp 1.51 ( + + .6632p 2n 0.9352 x ( + 0.6632) 1 + 1.5 x 0.6632

= 0.08772

Next, calculate three points on the Q vs. P curve using Equation 3-8:1o

(2

"= (5 0.66 - 1

18



SP Q
10 Q

0.5 0.997

0.965 0.5

0.999 0.26

Plotting these three points in normal-normal probability space yields the

solid line shown in Figure 3-4. The open and filled circles are the data points that

result from a reworking of this same problem by Monte Carlo simulation, as will be dis-

cussed in the next subsection.

3-4 VALIDATION.

In order to validate the methodology presented in Section 3-2, Monte Carlo

simulation was used to rework the illustrative problem (see Sec. 2-4). An outer loop of

1000 and an inner loop of 855 were used.

In our first simulation, all distribution models (C, D, C, D) were assumed to

be lognormal, like our methodology. The results were P = 0.938 and Ap = 0.0883. Our

methodology, which yielded P = 0.935 and Ap = 0.0877, is in excellent agreement. Some

of the percentiles for the Q function for this simulation are indicated in Figure 3-4

by the filled circles.

In our second simulation, all distribution models were assumed to be normal

to test the sensitivity of the results to the assumed distribution models. The results

were P = 0.900 and Ap = 0.0932. These results were indicated by the open circles

plotted in Figure 3-4. For most applications, the disparity shown in Figure 3-4 for Q

greater than about 0.1 would be acceptable.
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Table 3-1. Tabulated cumulative probability of

the normal distribution.

-3.090 0.001

-2.576 0.005

-2.326 0.010

-1.960 0.025

-1.645 0.050

-1.282 0.100

-1.036 0.150

-0.842 0.200

-0.674 0.250

-0.524 0.300

-0.385 0.350

-0.253 0.400

-0.126 0.450

0.000 0.500

0.126 0.550

0.253 0.600

0.385 0.650

0.524 0.700

0.674 0.750

o.842 .o800

1.036 0.850

1.282 0.900

1.645 0.950

1.960 0.975

2.326 0.990

2.576 0.995

3.090 0.999

For a more extensive table, refer to a textbook or a handbook of statistics
and probability.
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SECTION 4

CAPACITY WILL EXCEED REPEATED DEMANDS

4-I INTRODUCTION.

This section extends the results presented in Section 3 to the case of

repeated application of demand. Capacity or demand or both may change randomly or

deterministically from demand application to demand application. The set of demands

may be deterministic, perfectly dependent, statistically independent, or partially

dependent. All the demands of a deterministic set are known. None of the demands are

known in an independent set. Given one demand, the other demands in a perfectly depen-

dent set become deterministic. These same remarks apply to the set of capacities.

The probability that the system's capacity in a given failure mode will exceed

repeated demands is shown in Table 4-1 for each of these states of dependency (after

Ref. 4). For states where P is bounded and 52 is either large (demands are, in
Cn

effect, deterministic) or small (capacitfes are, in effect, deterministic) compared to
2 the appropriate deterministic case is approximately correct. Fiqure 4-I shows
Dn2 2
the error introduced when 6 is neither large nor small compared to C NoticeDn C.Ntc

that if the demand set has a common density distribution (i.e., a common mean and COV)

and the capacity set has a common density distribution, the entries in Table 4-1 simplify

to

nl

N N (4-2)

P = l P 1 = P

P P  ; P 1 (4-3)

Since Pn is a random variable, in the Bayesian sense (see Sec. 3), the

resultant probability P is also a random variable. How to calculate P is shown

below.
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4-2 METHODOLOGY.

For those dependency states where P is equal to or can be approximated

by P n' calculate P and Ap as follows:

=P (4-4)n'

Ap A (4-5)
n

i

where Pn' and APn ' are calculated using the information given in Section 3. For
I N

those states where P is equal to or can be approximated by .. P n calculate

and A as follows: n=1

N
-- 1H (4-6)n= 1 n

2 N NA __ 2 + E E PplF P A p (4-7)

n A1 n n=l m=l n m n m

whenrm

where Pn and Apn are calculated using the information given in Section 3, and

is the correlation coefficient for P and P . When neither Equation 4-4

nor Equation 4-6 is a reasonable approximation to the truth, interpolate between the

two.

The correlation coefficient PP P is equal to zero if C and C are

independent and D and D are independent. For other dependency states, calcu-Sn m'

late PP P as follows:
n m

nP nm In (I + An)ln (1 + A2m) + Inm 4m)(+ ln(l + Am)

Pn n 2 ) ( + Mn) n( + ml(1 + A D ) m
PPn Pm In 1+ A 2 nI+n

(4-8)
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Calculate Q(P > P ) using Equation 3-8, where T is obtained by entering

Figure 3-2 with P and A Note that for P 0 Pn, Q(P > P ) is approximate and

T has no physical meaning.

4-3 ILLUSTRATIVE USE.

Calculate the probability (P vs. Q) that the system's capacity in a given

failure mode will exceed four applications of demand. Assume CI, C2 , C3, and C4 are

statistically independent, but have a common distribution function. Assume the same

independence and commonality for the demands and the expected demands. However, assume

that the expected capacities are perfectly dependent. Assume

= 1.28 6D = 0.21

D = 0.55 AE = 0.16

6 = 0.39 A5 = 0.24

From Table 4-1, we know that

n
P = [ P = PIP2P3P4

n= n

From Section 3-3, we know that

P,= P2 = P3 - P4 = 0.935

AP AP A 0.0855
PI p2 P3 P4

Note: these are the same parameters used in Section 3-3.
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Substituting into Equations 4-6 and 4-7 yields

= 0.9354  = 0.764

A2  = 4 x 0.08772 + 12 x p p x 0.08772
n m

The correlation coefficient p is calculated using Equation 4-7 with pbnm 0
nrp nm

and p = 1.0. Equation 4-7 yields P- 0.311 and A becomes 0.244, upon

substitution for p . n 0 a
n m

Entering Figure 3-2 with Ap = 0.244 and P = 0.764 yields T = 0.7. Enter-

ing Equation 3-8 with T = 0.7 and P = 0.764 gives

(0.72 r1+00.72 
k

0.7

P Q
0

0.5 0.90

0.81 0.5

The straight line shown in Figure 4-2 was constructed from the above data.

4-4 VALIDATION.

In order to validate the methodology presented in Section 4, Monte Carlo

simulation was used to rework the illustrative problem. An outer loop Of 139 and an

inner loop of 855 was used. All distributions were assumed to be lognormal. The

results were P = 0.783 and Ap = 0.202. Some of the percentiles for the Q function

are shown in Figure 4-2 as the filled circles. The agreement between the two solutions

"* is reasonably good.
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SECTION 5

FAILURE-MODE SETS

This section extends the results presented in Section 3 to a set of failure

modes. Only one application of demand per failure mode is considered. Capacity or

demand or both may change randomly or deterministically from failure mode to failure

mode. The set of capacities may be deterministic, perfectly dependent, statistically

iidependent, or partially dependent. All the capacities of a deterministic set are

known. None of the capacities of an independent set are known. Given one capacity, the

other capacities in a perfectly dependent set become deterministic. The same remarks

apply to the set of demands.

The probability that all the capacities in an M-failure-mode set will exceed

their demands is shown in Table 5-I for each of these states of dependency (after Ref. 4).

Noting the similarity between Tables 4-1 and 5-1, we conclude that the methodology pre-

sented in Section 4 for a system responding in a given failure mode to N repeated

demands is, with a simple change of notation, also applicable for an M-failure-mode set.

j 3
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SECTION 6

ASSESSMENT

6-1 INTRODUCTION.

You will be faced either with assessing (synthesizing) the probability of

mission success of an existing system or with allocating the probability of mission

success to the failure modes of an evolving system. The former task, which is by

far the easier of the two, is addressed here. The task of allocating the probability

of mission success is addressed in Section 7.

6-2 METHODOLOGY.

Follow these eight steps to assess the probability of mission success of an

existing or defined system:

1. Develop demand scenarios. Complete Steps 2 through 7 for each

scenario.

2. Identify the system's failure modes.

3. Calculate the system's demand applied in each failure mode.

4. Calculate the system's capacity in each failure mode.

5. Calculate the probability of no failure of the system in each failure

2 mode.

6. Construct the series-parallel network of no-failure probabilities.

7. Calculate PMS vs. Q.

8. Draw PMS vs. Q envelope.

What each of these eight steps entails is outlined below.

6-2.1 Step 1: Develop Demand Scenarios.

Exercise demand options (if any) to develop demand scenarios. Complete

Steps 2 through 7 for each scenario.
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6-2.2 Step 2: Identify Failure Modes.

Identify all the failure modes of the system that can abort the mission.

This task will be made easier if the system failure modes are categorized and each

category is addressed in turn.

6-2.3 Step 3: Calculate Demand.

Using the methodology presented in Section 2, calculate the mean, random COV,

and systematic CUV of the demand that is applied to the system in each failure mode

identified in Step 2. If the system is subject to repeated demand application, calcu-

late the demand descriptors for each application.

6-2.4 Step 4: Calculate Capacity.

Using the methodology presented in Section 2, calculate the mean, random COV,

and systematic COV 2f the capacity of the system in each identified failure mode. If

the system is subject to repeated demand application and the capacity change from

demand to demand, calculate the capacity descriptors for each demand.

6-2.5 Step 5: Calculate Probability of No Failure.

Using the methodology presented in Sections 3 and 4, calculate the expected

probability of no failure of the system and its associated systematic COV in each

identified failure mode. Account for repeated demand applications, as required.

6-2.6 Step 6: Construct System Network.

Construct the series-parallel network of the system failu-e mode probabili-

ties. (Note that the expected v-lues and systematic COVs of these probabilities were

calculated in Step 5.) Do this by grouping the failure modes into sets such that

within each set it can be reasonably assumed that there is perfect dependency; between

sets, it can be reasonably assumed that there is statistical independence. Accomplish

this step under the assumption that there is zero systematic uncertainty throughout the

s y stem.
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6-2.2 Step 2: Identify Failure Modes.

Identify all the failure modes of the system that can abort the mission.

This task will be made easier if the system failure modes are categorized and each

category is addressed in turn.

6-2.3 Step 3: Calculate Demand.

Using the methodology presented in Section 2, calculate the mean, random COY,

and systematic COV of the demand that is applied to the system in each failure mode

identified in Step 2. If the system is subject to repeated demand application, calcu-

late the demand descriptors for each application.

6-2.4 Step 4: Calculate Capacity.

Using the methodology presented in Section 2, calculate the mean, random COY,

and systematic COV of the capacity of the system in each identified failure mode. If

the system is subject to repeated demand application and the capacity changes from

demand to demand, calculate the capacity descriptors for each demand.

6-2.5 Step 5: Calculate Probability of No Failure.

Using the methodology presented in Sections 3 and 4, calculate the expected

probability of no failure of the system and its associated systematic COV in each

identified failure mode. Account for repeated demand applications, as required.

6-2.6 Step 6: Construct System Network.

Construct the series-parallel network of the system failure mode probabili-

ties. (Note that the expected values and systematic COVs of these probabilities were

calculated in Step 5.) Do this bv grouping the failure modes into sets such that

within each set it can be reasonably assumed that there is perfect dependency; between

sets, it can be reasonably assumed that there is statistical independence. Accomplish

this step under the assumption that there is zero systematic uncertainty throughout the

system.
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6-2.7 Step 7: Calculate PMS.

The system's probability of mission success (PMS) is calculated in a

manner similar to the calculation of capacity or demand (see Sec. 2). Accordingly,

the actual PtiS is represented by

PMS = g(P1 ... , Pj..... P J) (6-1)

where P. is the actual probability of no failure of the system in the jth set of
J

failure mode probabilities identified in Step 6. The first-order approximation of the

expected value of PMS is simply

P S = g (P I... .. ' P J) (6-2)

where P. is the expected probability of P. calculated in Step 5 and the function g
J J

is the mathematical equivalent of the series-parallel arrangement of PI, P2' P3''."

constructed in Step 5. Calculate PMS using the well-known rules for manipulating

series-parallel arrangements of independent probability events.

Calculate the systematic COV of PMS (i.e., the COV of PMS) using

2 ) 2 2 E
J-F. \2( Lg ) 2

A2 MS 2 j_'PMS' ijAi (6-3)
NIS itj' j i=l j=l PMS 2  

3p. jP. 11 P. P.i4j I j JJ

where the partial derivatives are to be evaluated at P11 P2' P3''''; Ap is the

systematic COY of P. calculated in Step 5; /- is the systematic COV associated with
J g

the modeling error in your network; and pPp i is the correlation coefficient for P.

and P. Calculate pp using Equation 4-8.
J I J

Finally, calculate your confidence that PMS exceeds PIS using

00

Q(PMS -PiS) k 0
7. T  (6-4)

Add the second-order terms as required.
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Obtain T by entering Figure 3-2 with PMS in place of P, and APMS in place of Ap.
PMS p

Note that Equation 6-4 plots as a straight line in normal-normal probability space.

6-2.8 Step 8: Draw PMS Envelope.

Using the results of Step 7, plot the PMS vs. Q line for each demand0

scenario on lognormal-lognormal probability paper. The left-most envelope of these

lines is the sought-after probability of mission success vs. confidence relationship

for the particular mission under consideration (see Fig. 6-I).

6-3 ILLUSTRATIVE USE.

The seventh step of the above methodology is illustrated below for the system

network shown in Figure 6-2 and for

= 0.99

P2  = P 0.92 3P 4 = 0. 95

Ap = 0. 04P -

A P = A = 0.1

A = 0.02
P4

- = 0.024q

= P 1.0

All other 0 0.0

T has no physical meaning for systems comprising two or more independent failure modes.
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Calculate PtIS using Equation 6-1:

PMS = P3 P 4+ P IP 2P4 - P P P3 P4

Calculate PtMS using Equation 6-2:

PMS = P3 P 4+ P IP 2P4 - P 1P2 P P

= 0.94

Calculate the partial derivatives in Equation 6-3:

DPMS -

DP 2 4 -P2 P3P4 = 0.0855

DPMS = p pp = 0.0941

7P-2 = P14 1 I3P4

=PS P I = 0.1036

P 0

3DPMS = 3 + PIP -PPP 0.9891

0

Substituting the above partials into Equation 6-3 yields

A2  =002 + (0 0. 08552 002 10.9 2 1x0.2
APMS 0.2 -. 4)005 ~ 4+ (0.94) 0.0941 .

+ (0-9)2 0.10362 0 .12 + (.1)2 0.98912 ,0.02

0.9 x 0.94

=0.034 2
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Determine T by entering Figure 3-2 with PMS = 0.94 and APMS = 0.034:

T = 0.28

Finally, use Equation 6-4 to obtain the solid line plotted in Figure 6-2.

6-4 VALIDATION.

In order to validate the methodology presented in Section 6-2, the illustrative

problem presented in Section 6-3 was reworked using binomial models as a basis for simu-

lation. This simulation technique is explained below.

If P. denotes the population mean and AP denotes the coefficient of

variation of an estimate (mean) from a sample of size N. from the ith population, then

(I - Pi) / P.N. = A" i iP.

Thus, from the problem input (Sec. 6-3), we infer

N = 6.31 6

N = 11.11 11
2

N = 11.11 11

N 4 = 131.58 132

For each set of possible sample outcomes (sI, S3, S4) where S. denotes the number
2' V I

of successes in N. trials, the system reliability estimate will be given by

PS PP4 + PPP - P P2P 3P
3 4 1214 1234

where

P. = S. N.
I I I
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The probability of this PMS value is given by

H( N,) P - N-N.-.

i=1,2,

where

Nih = N.! /Si!(N. - Si)!

SiJ

Note that the i = 3 term is ignored in the cell probability, since p = 1.0

(i.e., S2 = $3)2

This binomial model yields PMS = 0.932 and APMS = 0.0348. (Our method-

ology yielded PMS = 0.94 and APMS = 0.034.) Some of the percentiles for the Q

function for this model are indicated in Figure 6-2 by the filled circles. Although

the Q curve for the binomial model is not linear, the agreement with the presented

methodology is reasonably good.

The general remarks about the applicable domain made in Sections 2-4 and 3-4

also apply here.
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SECTION 7

ALLOCATION

7-1 INTRODUCTION.

The reverse of assessment of the probability of mission success (PtS) of an

existing system is the allocation of the PMS to the failure modes of an evolving system.

Although, in concept, allocation is the reverse of assessment, the methodologies by

which each is achieved are quite similar, as will be seen in this section.

7-2 MiETHODOLOGY.

Follow these 11 steps to allocate the probability of mission success (PHS):

1. Develop demand scenarios. Complete Steps 2 through 9 for each scenario.

2. Identify the system failure modes.

3. Calculate the system's demand applied in each failure mode.

4. Construct the series-paralief network of no-failure probabilities.

5. Select a trial value of PMS.

6. Allocate PMS to each failure mode.

7. Calculate for each failure mode the mean capacity required to satisfy

the allocated share of the PMS.

8. Calculate APMS, the systematic uncertainty of PMS.

9. Calculate PMS. Repeat Steps 5 through 9 until the final and calculated

PMS's are acceptably close.

10. Identify the critical mean capacity in each failure mode.

11. Write, for each failure mode, the deterministic design specification for

the identified critical mean capacity.

Steps 1, 2, 3, and 4 are identical to the first four steps of assessment (see Sec. 6).

Steps 8 and 10 have their counterparts in assessment and need not be discussed. Steps 5

6, 7, 9, and 11, however, are unique to allocation. Step 11 requires no explanation.
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7-2.1 Step 5.

Select a trial value of the expected probability of mission success, PMS.

Solving Equation 6-4 for PMS and finding its maximum and minimum values with respect to

T yield these bounds:

0 PS < D 2 + k/Q (7

where the probability that the system will successfully complete the mission is at

least PMSo, stated with Q confidence. Use Equation 7-1, with criteria PMS° and Q,

as an aid in selecting a trial value of PMS.

7-2.2 Step 6.

The crux of Step 6 is to allocate the PMS in such a way that maximum cost

effectiveness is achieved for the system. In general, this optimum state will be

achieved by allocating the largest shares of the PMS to those failure modes that exhibit

the smallest cost increments per share of the PHS, and vice versa. See Reference 5

for an introduction to optimizing allocations.

7-2.3 Step 7.

Calculate for each failure mode the mean capacity required to satisfy the

allocated share of the PMS. Use Equation 3-9.

7-2.4 Step 9.
Calculate PMS using the following manipulated form of Equation 6-4:

S Q 0(7-2)

where T is obtained by entering Figure 3-2 with the trial value of PMS and the

AS calculated in Step 3, and PMS and Q are given criteria values. Repeat Steps 5NIS0
through 9 until the trial and calculated PMS's are acceptably close.
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7-3 ILLUSTRATIVE USE.

The following example illustrates Steps 5, 6, 7, and 9. Validation of this

example is not necessary.

Step 1.

Only one demand scenario is assumed applicable for purposes of this illustra-

tive example.

Step 2.

Only two failure modes are assumed significant.

Step 3.

Assume that we have determined the following demands for Failure Modes I

and 2:

D, = 28 units D = 13 units

6 = 0.18 6 = 0.20

A-1 = 0.15 A-2 = 0.06

Step 4.

The two failure modes are assumed to be in series.

Step 5.

Assumed criteria

PMS = 0.5
0

Q = 0.9

Therefore, from Equation 7-1, we obtain

0.5 < PMS < 0.9

Try PMS 0.7
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Steps 6 and 7.

Assume, for purposes of this illustrative example, that

Cost C1  + C2,

where C and C are the expected capacities of the system in Failure Modes I and 2,22
respectively. Moreover, assume that we have determined that

6 = 0.09 6 = 0.18

CE1 = 0.15 A- = 0.12

Equation 3-3a yields T1 = 1.0 and T = 0.5. Equation 3-9a yields

C, = 28 exp(0.29 kP )
1 1

C 2= 13 exp(0.30 kP )

Thus,

Cost 28 exp(0.29 kp1) + 13 exp(0.30 k 2
1 2

For P = P P = 0.7, it can be verified that cost is approximately minimized for
P~ 2 .7 = 0.0 = 3

P1 0.78 and P2 0.90. Thus, C1 = 35 units and C2 = 19 units.

Step 8.

Entering Figure 3-2 with T, = I and P = 0.78 yields At = 0.27. In a

similar fashion we find AP = 0.094. From Equation 6-3,

2 = A2 +A 2  0.272 + 00942 = 0.2862ii -- ,S PI P2

*1 1  2
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Step 9.

Entering Figure 3-2 with A PMS = 0.286 and PMS 0.7 yields T = 0.7.

Finally, Equation 7-2 yields

PMS = D 0.7 x 0 + 1.282 = 0.85 # 0.7

1 I -+ O.

Step 5a.

Try PM- = 0.85.

Steps 6a and 7a.

For PM-S= 0.85, P1 
= 0.90 and P2  0.94 approximately minimize cost.

Thus, C1 = 41 units and C2 = 21 units.

Step 8a.

Entering Figure 3-2an
EneigFiue32with T = 1 and P = 0.90 yields A = 0.155. In a

similar fashion we find Ap = 0.064. From Equation 6-3,

42 2
A 2 0.1552 + 0"0642 = 0.1682

APMS=015

Step9a.-

Entering Figure 3-2 with ApMS = 0.168 and PMS= 0.85 yields T = 0.7.

Equation 7-2 yields PMS = 0.85 (trial and calculated PMS identical).

Step 10.

CI = 41 units

2 = 21 Units
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SECTION 8

CLOSING REMARKS

The applicable domain of the methodology is summarized as follows. The

calculation of C, 6C, and A will be relatively accurate and insensitive to the dis-

tribution details of the independent variables of C if the second-order term in the

expression for C (Eq. 2-3a) is small compared to the first-order term. (The same

remark applies to D, 6D, and A-.) The calculation of P(C > D) will be relatively

accurate, provided C, C, D, and D are unimodal in distribution and P and Q are

near 0.5, say 0.01 < (P, Q) < 0.99. C, C, D, and 0 will exhibit unimodal distribu-

tions if their independent variables exhibit unimodal distributions or if there are many

independent variables. The calculation of Q(PMS > PMS ) will be relatively accurate,0

provided the second-order term of PMS is small and PMS and Q are near 0.5, say

0.01 < PMS, Q , 0.99.

We have elected to write Q(P > P0 ) for the probability that P > P and to

read Q(P > P ) as "Our confidence that P exceeds P ." The use of confidence in
0 0

this context has as its precedent the statement of the one-sided confidence limit for

the estimate of a model parameter in classical statistics. Thus, strictly speaking,

Q(P > P ) should be read 'The lower one-sided Q-confidence limit for P is P 0

Our methodology (or for that matter any methodology of the same purpose)

requires that the systematic COVs be quantified using subjective reasoning. If the

sponsoi of the application of the methodology will not accept subjective estimates, then

there can be no application. Most -ponsors, however, will entertain the idea of subjec-

tive estimates if the bases for these estimates are well documented.

Finally, it should be remarked that admitting even less general definitions

of the terms ''system" and "mission" than are normally held (or discarding the concepts of

"system" and "mission" altogether) gives the preserted methodology, or 9t least portions

of the methodology, quite general applicability. For example, the methodology could be

applied to cost estimating, to scheduling, and to RDT&E planning.

These remarks are also applicable for Q(PHS ' PMS ).

In the rare cases where specific experiments have been performed, systematic COVs can
be calculated.
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APPENDIX A

DERIVATION OF EQUATIONS 3-2 AND 3-5

Suppose we know perfectly the "random" standard deviations a and aD of the

normal distributions of capacity and demand, respectively, but that the means pC and

PD have an uncertainty represented by normal distributions with "systematic" standard

deviations SC  and SD  in the respective unbiased estimates C and D. Let

2 2 20 1 C  + Do

S2 S 2 +S2
C D

T S/0

S C  I D

mCD

A m/0

f(z) - (21) - 0 " 5 exp(-z 2/2)

,(z) f(t) dt

Then :(A) is known to be the median reliability, R. The problem is to find the mean

reliability, R.

THEOREM A-1: R = A//l +T2

Proof: The reliability is f(p/), where J is normally distributed with mean m

and standard deviation S. This is written as

i s2)

: N(m, S
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i

II

If we transform Y to the variate

x = N(O, 1)

by the transformation

x = (y - m)/S

the reliability becomes

@(Tx + A).

Then

RD(Tx + A) f(x) dx

= (Tx + A) f(x) dx

- (21) - exp(-I(Tx + A)2 + x2 /2) dx.

Transform

w+ + AT/\+T2

Then

(27)
-1 f exp(-w

2 + A
2 /(l + T

2 )1/2) dw /V +T
2

= 12,C0 + T2) -0"5 exp(-A
2 / 2 ( I + T2 ) J f(w) dw

f f(A/6 + )T ' +T5

= (A/NF77+T')+ K
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Where K denotes an arbitrary constant of integration. Since R = 0.5 when

A = 0, we have

0.5 = P(0) + K

K = 0. QED.

Suppose now that capacities and demands are lognorally distributed, not

normally distributed. Let

z = log (capacity) = N(p, 02)

THEOREM A-2: The nth momert of capacity is exp(np + n2 a2/2)

Proof: Let x = N(O, 1), and let E[g] denote the expected value of g.

m E[Cn] E E[ezn] = E[exp((x3 + 0i) n)]

n2
= ( 2 n)- j exp((xo + P) n) exp(-x /2) dx

Let

y = x -n

Then

m = (2) 0 "5 f exp(-y 2 /2 + 2 n 2 /2 + tn) dy

= exp(nij + n 2 2 /2)

Corollary: E[C] = exp(i + o2/2).

At this point we should note that the preferred procedure is to transform all

observations by z = log C and work with the transformed sample, if this sample
passes a goodness-of-fit test for normality. The remainder of this Appendix would

then be unnecessary.
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Corollary: if 6 is the coefficient of variation of C, then

6 2 = m 2m = _m m~j/m2

= exp(2p + 2,) exp(P+ y /2)1 2 j.1expdi +oc 2/2)t 2 exp(o 2

0 2= log(1 + 62)

Note that 6 2 + a0 /2 + 0 /6, small a. Also 6 0 + 0 6, 6 0y

Corollary: The third central moment is

m = m -3m m + 3m 3-m 3

=exp(3i + 3a2/2){xp(3O -3 expo) + 4
m3 ,4 +I 4a 6, for small a.

Corollary: The fourth central moment is

= M -4m m + 6m m 2_4m 4+ m4
4 3 1 2 1 1 1

304 + I906o for smal I o.

Let C denote the mean of a sample of size n.
n

2
Corollary: E[C 1 exp(ii + 0 /2)

n
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THEOREM A-3: The second central moment of C is E 2 [C] 6 2/n

Proof: EJ()21 = E[j(n exi/,n)21

= E e 2x + 2 1: exixjJIn 2

= (nm + n(n 2)/2

= (exp(2i + 2a2) +(n -1) exp(2i + a2)/

E Mn )21 - E 2[ Cj = exp(2i + (32), exp(a 2  - 11/n -QED

Corollary: If A denotes the coefficient of variation of C, then A 2 2/n.

THEOREM A-4:

E~o(CJ p ' o( 0-1/2n a (n -1/4

6 3
- (n M )n -

6)/12n , for small a.

Proof:

F n z.\ n~~epz)+ 2~)'

E lo( eli/n) E E[og~exp(p + a 2/2) + e=1 - exp(w 2/4/)

+ o02/2

+ E log (I + iexp(z)- exp~w + a /2) /nexp(i + a212))
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Since

log(1 + W) =w w w2/2 + w3 /3 w W
4

/A + w5 /5 w w6,A

E[log(E )] = p + a212 - n6 /2n2 + (34 + 4a61 Wn

-(0+ 190T )/4n- 3n(n 06 A)/n4

+lOn(n - 1)(30 6 )/5n5 -5n(n - l)n -2)61An
6

Ignoring terms of order u 6A4 a8orls.Te

E[log(E )1= w + a 2 (n -1)/2n - a4(1/4n - /n 2 + 3/4n3 + 3/n- 3/4n 3)

+(-1/12n + 4/3n 2 _ 19/4n3 - 3n 2 
+ 3n

+ 6/n3 - 5/2n3) QED

THEOREM A-5: If

log nc 1 2/'+ 62

then

E[11 C1 + 06 (n 0 1/3n3

Proof:

-j. log {(I + 6L2/n)Il + 6 2), log {1 + 62 /n~n -±log(, + 62)

I lg +6 +(n - 1) 6 4/2n + (n - M)n - 266/n2 Y2/2

2 1 log [1 + 621([1 + (n - 1)6 4 /2n + (n - )n - 2)6 6/An2 -(n -) /n

2 2/2
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_2 o2/2n + (n 1 (o4 + o 6)/2n + o 6(n - 3n + 2 - 3n2 + 3n)/6n 2 - o2/2

S- 2(n - 1)/2n + a4(n - I)4n2 + o6 [n - 3n + 2]/12n 3

and the theorem follows from A-4. QED

From Theorem A-5, P C  is an asymptotically unbiased estimate of p C We

could then proceed in the same way with the demands. The result would be that

PC- PD would be an asymptotically unbiased estimate of pC - PD, The median

reliability would then be

C (( D-2)/ 0C2 + UD2)

which is Equation 3-5. Equation 3-2 follows from this and Theorem A-I.

I
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APPENDIX B

DERIVATION OF EQUATIONS 3-6 AND 3-7

What is the variance of the reliability, given the same notation as in

Appendix A? From that discussion, we have

R = $(Tx + A)

where

x = N(O, 1).

The variance is

S = f 42 (Tx + A) f(x) dx R

Let

-R D(A),

2

and the other for T _ 0.3. These are tabulated for different values of R and T

and compared with the values from numerical integration (see Table B-I). The first

approximation was uncovered as follows: Let

M2 (T) = 2 @2 (Tx + A) f(x) dx.

Then

M2(T) = 2x(Tx + A) f(Tx + A) f(x) dx

M'"(T) = 2x2f(x) dxlf 2 (Tx + A) + O(Tx + A) f'(Tx + A)I

2.. .- ,D
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M 2 (T 2x 3f(x) dx[3ff' + fI

2

(T) 2x1 f(x) dxl3f'
2 + 4ff" + Pf...]

2

Since

f,(x) = -Xf(X)

fil'(x) = (-x3 + 3x) f(x)

we have

2
M(0) = (A)

Yo() 0

2

til"(o) 0
22

m11(0) 6f(A)[3A 2f(A) + 4(A 2 1) f(A) + (-A3 
+ 3A) 4)(A)]

Expansion around T = 0 then gives

M (T) 4 (2 (A) + T 2f(A) f(A) - A)(AP1

+ T 4 f(A)If(A)17A 2  4 1 + 4D(A) [-A 3 + 3A]1/4
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Similar Iy:

~(T) = 4(Tx + A) f(x) dx

R()= J xf(Tx + A) f(x) dx

RII()= x xf'(Tx +I A) f(x) dx

A-T)= x3 f"(Tx +- A) f(x) dx

& I4
R"()= J xf"'(Tx + A) f(x) dx

R(O) = 4 A

AM = 0

()= -Af(A)

R-(O) o

(0 3Af (A) [3 A 2 1

R(T) P(A) T TAf(A)/2 + T-fA1 A2 1/8

R(T) (A) -T Af(A)4,(A) + T Af(A)[Af(A) + 4)(A)1$3 A A11/4.
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a 2 T R T 2f2 ()+T4f2 ()7A2 -4-A2]/
R 2

f(A) T 2(1 + T 2(3A 2/2 - 1))

=f
2 (A / Il + 3T2/2) /(1 + 

2)

and our first approximation is

0R=f (A/41v + 3T2/2) T/41 + T, smallI T.

For our second approximation, we notice that (see Table B-i)

2 21 T- 0.2155/0-7535

o R G R H4(l I, large T.

A=O

All we need, therefore, is o 21=

THEOREM B-i:

a2102 0/ cot 1 '\l + 2T2

R A=O

Proof:

am 2 T)/ = 25E 4(Tx +t A) f (Tx + A) f xW dx

I (/sr T D(Tx + A) exp(jl[Tx + A] 2 + x 2 /2) dx

If we make the substitution

y = +V'T2 +AT +2
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we have

3(T)A (1) TY/Vl + T2 + A/(] + T2

exp(-(+ ( + T )/2) dy/V + T2

2f (A') 4 T'y + A") f (y) y1V,+T

where

A' = A/NF, + T2

=,- T/V7 T7

A" = A'/V7+ T2

Then the algebra of Theorem A-i gives

S)M2 (T)/;3A = 2f(A')t(A' I +"T.2)IV, + T 2

M 2(T/AI = 2f(A')(A' / +2T)

M 2 (T) = 2 j f(w)4 ](w +2Tdw

Now let

r 1[6 + 2T2

o . A '

M 2(r) = 2 f(w)4(rw) dw
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A'
3-2()3 2 wf(w) f(rw) dw

A'
S1Ti) f exp(~r 2 + I w 2/2) wdw

=-exp (A' (r + 1)/2 )/11 (r + 1

= -exp (- A r 2/,(r + 1

Now, if A =0, then R=0.5 and

2(r = 0.5 -fo dr/Ti(r 2 + 1) = 0.5 -(1/T) tan (r)

R = 0.25 -(1/Ti) tan- (r) QED

From this, we could get an approximation for extremely large T (small r):

M 2(r) 0.5 - r/a + r3(A 2+ 0/3i

R3 0.5 - r/Ti + r3(A 2+ 0)/3T R2
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Boeing Co. H-lech Labs., Inc.
ATTN: Aerospace Library ATTN: B. Hartenbaum
ATTN: R. Holmes
ATTN: R. Hager Honeywell, Inc.
ATTN: M/S 42/37, R. Carlson ATTN: T. Helvig
ATTN: J. Wooster
ATTN: R. Dyrdahl lIT Research Institute

ATTN: Documents Library
3oeing Co. ATTN: A. Longinow

ATTN: M/S 42/37, K. Friddell
Institute for Defense Analyses

California Research & Technology, Inc. ATTN: Classified Library
ATTN: Library ATTN: Director
ATTN: K. Kreyenhagen
ATTN: S. Schuster J. H. Wiggins Co., Inc.

ATTN: J. Collins
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Kaman AviDyne Physics International Co.
ATTN: G. Zartarian ATTN: F. Sauer
ATTN: N. Hobbs ATTN: R. Swift
ATTN: Library ATTN: C. Vincent
ATTN: E. Criscione ATTN: E. Moore

ATTN: L. Behrmann
Kaman Sciences Corp. ATTN: Technical Library

ATTN: F. Shelton
ATTN: Library University of Pittsburgh
ATTN: D. Sachs ATTN: M. Willims, Jr.

Karagozian and Case R & D Associates
ATTN: J. Karagozian ATTN: P. Rausch

ATTN: A. Field
Lockheed Missiles & Space Co., Inc. ATTN: R. Port

ATTN: B. Almroth ATTN: J. Lewis
ATTN: T. Geers ATTN: Technical Information Center

ATTN: A. Latter
Lockheed Missiles & Space Co., Inc. ATTN: C. MacDonald

ATTN: rIC-Library ATTN: W. Wright, Jr.
ATTN: P. Haas

Management Science Associates
ATTN: K. Kaplan Rand Corp.

ATTN: A. Laupa
Martin Marietta Corp, ATTN: C. Mow

ATTN: G. Fotieo ATTN: Library
ATTN: A. Cowan

Science Applications, Inc.
Martin Marietta Corp. ATTN: Technical Library

ATTN: J. Donathan
Science Applications, Inc.

University of Massachusetts ATTN: S. Oston
ATTN: W. Nash

Science Applications, Inc.
McDonnell Douglas Corp. ATTN: D. Maxwell

ATTN: R. Halprin ATTN: R. Hoffman
ATTN: D. Bernstein

Merritt CASES, Inc.
ATTN: J. Merritt Science Applications, Inc.
ATTN: Library ATTN: G. Binninger

ATTN: B. Chambers III
Meteorology Research, Inc. ATTN: W. Layson

ATTN: W. Green
Southwest Research Institute

Mitre Corp. ATTN: A. Wenzel
ATTN: Director ATTN: W. Baker

Nathan M. Newmark Consult. Eng. Svcs. SRI International
ATTN: J. Haltiwanger ATTN: G. Abrahamson
ATTN: N. Newmark ATTN: W. Wilkinsoni ATTN: W. Hall

Systems, Science & Software, Inc.
6 University of New Mexico ATTN: T. Riney

ATTN: G. Triandafalidis ATTN: T. Cherry
ATTN: Library

University of Oklahoma ATTN: D. Grine
ATTN: J. Thompson ATTN: T. McKinley

ATTN: R. Sedgewick
Pacific-Sierra Research Corp.

ATTN: H. Brode Teledyne Brown Engineering
ATTN: J. Ravenscraft

Pacifica Technology
ATTN: R. Allen Terra Tek, Inc.
ATTN: R. Bjork ATTN: Library
ATTN: G. Kent ATTN: S. Green

ATTN: A. Jones
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Tetra Tech, Inc. TRW Defense & Space Sys. Group

ATTN: Library ATTN: E. Wong

ATTN: L. Hwang ATTN: F. Pieper
ATTN: G. Huicher

Texas A & M University System 2 cy ATTN: P. Ddi

ATTN H. oyleWeidlinger Assoc., Consulting Engineers

TRW Defense & Space Sys. Group 
ATTN: J. McCormick

ATTN: P. Bhutta ATTN: M. Baron

ATTN: Technical Information Center
ATTN: D. Jortner Weidlinger Assoc., Consulting Engineers

ATTN: B. Sussholtz ATTN: J. Isenberg

ATTN: A. Feldman
ATTN: A. Narevsky Westinghouse Electric Corp.

2 cy ATTN: N. Lipner ATTN: W. Volz

72

____________________________________4T-


